A Research paper on Automatic language translator of
Abstract
Language Translator is a mobile application that can be used to translate from one language to another. Language differences have hindered effective communication for years. This traditional approach to solving language difference problems has not been productive or cheap. In this research, we develop an Android language conversion app that simplifies language learning and translation for stress-free communication. The system can also evaluate language translations to determine if they aresuitable for everyday conversation.
References
kolla, V. ravi kiran. (2012). Heart Disease Prediction using Python Machine Learning. International Journal of Statistical Computation and Simulation, 4(1). Retrieved from https://journals.threws.com/index.php/IJSCS/article/view/149
meeeniga, N. reddy. (2013). Heart Disease Prediction using Deep Learning and Artificial intelligence. International Journal of Statistical Computation and Simulation, 5(1). Retrieved from https://journals.threws.com/index.php/IJSCS/article/view/150
meeeniga, N. reddy. (2014). Type 2 Diabetes mellitus treatment intensification and deintensification. Transaction on Recent Devlopment in Industrial IoT, 6(6). Retrieved from https://journals.threws.com/index.php/TRDAIoT/article/view/153
kolla, V. ravi kiran. (2011). WEATHER PREDICTION USING MACHINE LEARNING. Transaction on Recent Devlopment in Industrial IoT, 3(3). Retrieved from https://journals.threws.com/index.php/TRDAIoT/article/view/152
Whig, P., & Ahmad, S. N. (2011a). On the performance of ISFET-based device for water quality monitoring. Int’l J. of Communications, Network and System Sciences, 4(11), 709.
Whig, P., & Ahmad, S. N. (2012a). A CMOS integrated CC-ISFET device for water quality monitoring. International Journal of Computer Science Issues, 9(4), 1694–1814.
Whig, P., & Ahmad, S. N. (2012f). Performance analysis of various readout circuits for monitoring quality of water using analog integrated circuits. International Journal of Intelligent Systems and Applications, 4(11), 103.
Whig, P., & Ahmad, S. N. (2013a). A novel pseudo-PMOS integrated ISFET device for water quality monitoring. Active and Passive Electronic Components, 2013.
Whig, P., & Ahmad, S. N. (2014a). Development of economical ASIC for PCS for water quality monitoring. Journal of Circuits, Systems and Computers, 23(06), 1450079.
Whig, P., & Ahmad, S. N. (2014c). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.