Federated Learning for Privacy-Preserving AI: A Decentralized Approach to Data Security

Authors

  • Dr. Prakash singh

Abstract

With the increasing reliance on AI-driven applications, concerns over data privacy and security have become paramount. Federated learning (FL) offers a decentralized machine learning approach that enables collaborative model training without directly sharing sensitive data. This paper explores the fundamentals of FL, its advantages over traditional centralized AI models, and its application in privacy-sensitive domains such as healthcare, finance, and IoT. We analyze the performance and security trade-offs of FL, discussing challenges such as communication overhead, adversarial attacks, and model poisoning. Our findings suggest that FL provides a promising pathway toward secure and privacy-preserving AI development.

References

Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.

Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.

Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Artificial Intelligence-Driven Predictive Analytics for Educational Behavior Assessment. Transactions on Latest Trends in Artificial Intelligence, 1(1). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/638

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Machine Learning Algorithms for Fraud Detection in Financial Transactions. International Journal of Sustainable Development in Computing Science, 2(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/639

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183

Adusumilli, S., Damancharla, H., & Metta, A. (2023). Enhancing Data Privacy in Healthcare Systems Using Blockchain Technology. Transactions on Latest Trends in Artificial Intelligence, 4(4). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/637

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2021). AI-Powered Cybersecurity Solutions for Threat Detection and Prevention. International Journal of Creative Research In Computer Technology and Design, 3(3).

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2020). Leveraging AI for Real-Time Sentiment Analysis in Social Media Networks. International Numeric Journal of Machine Learning and Robots, 4(4).

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Manoharan, G., Mishra, A. B., Adusumilli, S. B. K., Chavva, M., Damancharla, H., & Lenin, D. S. (2024, May). Supervised Learning for Personalized Marketing Strategies. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-6). IEEE.

Adusumilli, S. B. K. (2024). SCALABLE SOFTWARE ARCHITECTURE FOR DYNAMIC THREAT DETECTION AND MITIGATION IN IOT. Machine Intelligence Research, 18(1), 468-481.

Whig, P., & krishna Adusumilli, S. B. (2024). Leveraging AI and Machine Learning for Optimizing Supply Chain Management in Healthcare: A Predictive and Prescriptive Approach. International Scientific Journal for Research, 6(6).

Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.

Whig, P., & Adusumilli, S. B. K. (2023). Enhancing Healthcare Delivery Through AI-Driven Supply Chain Innovations: A Case Study Perspective. International Transactions in Artificial Intelligence, 7(7).

Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.

Whig, P., & Adusumilli, S. B. K. (2022). Machine Learning Applications in Healthcare Supply Chains: Improving Efficiency, Resilience, and Patient Outcomes. Transactions on Recent Developments in Health Sectors, 5(5).

Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).

Balantrapu, S. S. (2021). A Systematic Review Comparative Analysis of Machine Learning Algorithms for Malware Classification. International Scientific Journal for Research, 3(3), 1-29.

Balantrapu, S. S. (2020). AI-Driven Cybersecurity Solutions: Case Studies and Applications. International Journal of Creative Research In Computer Technology and Design, 2(2).

Published

2025-01-01

How to Cite

singh, D. P. (2025). Federated Learning for Privacy-Preserving AI: A Decentralized Approach to Data Security. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 17(17). Retrieved from https://journals.threws.com/index.php/TRDAIML/article/view/383

Issue

Section

Articles