Transfer Learning for Early Diagnosis of Rare Diseases Using Medical Imaging

Authors

  • Manoj Chowdary Vattikuti

Abstract

Diagnosing rare diseases is a challenging task due to the limited availability of labeled medical imaging data and the complexity of disease patterns. This paper proposes a transfer learning approach to address this issue, leveraging pre-trained deep learning models to improve diagnostic accuracy. The methodology involves fine-tuning models on small datasets specific to rare diseases, significantly reducing the need for extensive labeled data. Experiments on rare disease imaging datasets, such as rare cancer types and genetic disorders, demonstrate the effectiveness of transfer learning in achieving high accuracy with minimal training samples. This study highlights the potential of transfer learning to accelerate the early diagnosis of rare diseases, enabling timely interventions and improving patient outcomes.

References

Chintale, P., Korada, L., Ranjan, P., & Malviya, R. K. (2019). Adopting Infrastructure as Code (IaC) for Efficient Financial Cloud Management. ISSN: 2096-3246, 51(04).

Chintale, P., Korada, L., WA, L., Mahida, A., Ranjan, P., & Desaboyina,(2020) G. RISK MANAGEMENT STRATEGIES FOR CLOUD-NATIVE FINTECH APPLICATIONS DURING THE PANDEMIC.

Dahiya, S., Singh, S. K., Choudhary, S. K., Ranjan, P., & Cognizant, N. J. (2020). FUNDAMENTALS OF DIGITAL TRANSFORMATION IN FINANCIAL SERVICES: KEY DRIVERS AND STRATEGIES. Han, X., Zhao, X., de Almeida, AL, Freitas, WDC, & Bai, W, 1655-1659.

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Optimizing SAP Data Processing with Machine Learning Algorithms in Cloud Environments. International Transactions in Artificial Intelligence, 4(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Artificial Intelligence in Business Analytics: Cloud-Based Strategies for Data Processing and Integration. International Journal of Sustainable Development in Computing Science, 2(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Scalable Data Processing Pipelines: The Role of AI and Cloud Computing. International Scientific Journal for Research, 2(2).

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR) (pp. 1-15).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In Proceedings of the International Conference on Learning Representations (ICLR).

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems (pp. 841-848).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998-6008).

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4), 229-256.

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. Chapman & Hall/CRC.

Raghunath (2024), "Security Issues Analysis Based on Big Data in Cloud Computing," World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 2549-2557, 2024.

Raghunath (2024), "Analysis on Addressing the Threats to Cloud Computing on the Basis of Security Safeguards for SAP Cloud Services," World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 2539-2548, 2024.

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). AI-Driven Business Analytics Framework for Data Integration Across Hybrid Cloud Systems. Transactions on Latest Trends in Artificial Intelligence, 4(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Integrating AI and Cloud Computing for Scalable Business Analytics in Enterprise Systems. International Journal of Sustainable Development in Computing Science, 5(3).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Enhancing Data Integration Using AI and ML Techniques for Real-Time Analytics. International Journal of Machine Learning for Sustainable Development, 5(3).

Ranjan, P., Dahiya, S., Singh, S. K., & Choudhary, S. K. (2023) ENHANCING STOCK PRICE PREDICTION: A COMPREHENSIVE ANALYSIS UTILIZING MACHINE LEARNING AND DEEP LEARNING APPROACHES.

Banerjee, P., Roy, R., Batchu, C., & Ranjan, P. (2023) Examining the Application of Data Federation across Cloud Databases in the Financial Services Domain.

Published

2024-12-12

How to Cite

Vattikuti, M. C. (2024). Transfer Learning for Early Diagnosis of Rare Diseases Using Medical Imaging. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 16(16). Retrieved from https://journals.threws.com/index.php/TRDAIML/article/view/314

Issue

Section

Articles