Smart Healthcare: Leveraging IoT and Deep Learning for Real-Time Disease Detection

Authors

  • Prof. Arun sharma

Abstract

The integration of IoT and deep learning has the potential to revolutionize real-time disease detection in healthcare. This paper explores a smart healthcare system that utilizes IoT sensors to continuously monitor patient vitals and deep learning algorithms to detect early signs of diseases such as sepsis and cardiac events. We present the design and implementation of the system, along with a pilot study conducted in a clinical setting. The results show that the system can provide timely alerts to healthcare providers, potentially saving lives by enabling prompt medical intervention. The paper also discusses the challenges of data accuracy, real-time processing, and system scalability.

 

References

Kondru, V. L. P. (2016). Addressing the Disparities: The Burden of Dental Health in Low-Income Countries vs. Developed Countries and its Impact on Government Resources and Societal Well-being. International Journal of Medical Informatics and AI, 3(3), 1-17.

Kondru, V. L. P. (2015). Comparative Analysis of Healthcare Systems: A Study of India and the United States. Transactions on Latest Trends in Health Sector, 7(7).

Kondru, V. L. P. (2015). Electronic Health Care Records-Boon To Industry. International Journal of Medical Informatics and AI, 2(2), 1-18.

Kondru, V. L. P. (2014). Understanding Fluorosis: Implications for Dental and General Health. Transactions on Latest Trends in Health Sector, 6(6).

Kondru, V. L. P. (2014). Comparative Analysis of Oral Cancer Prevalence: Rural vs. Urban India and India vs. Developed . Journal of Healthcare Data Science and AI , 1(1), 1-20.

Kondru, V. L. P. (2014). Understanding Fluorosis: Implications for Dental and General Health. Transactions on Latest Trends in Health Sector, 6(6).

Kondru, V. L. P. (2014). Disparities in Dental Health Education: A Comparative Study of Rural and Urban Populations in India. International Journal of Medical Informatics and AI, 1(1), 1-17.

Kondru, V. L. P. (2014). A Review of the Association between Smoking, Alcohol Consumption, and Oral Cancer Risk. Journal of Healthcare AI and ML , 1(1), 1-18. https://journalpublication.wrcouncil.org/index.php/JHAM/article/view/6

Gonaygunta, H. (2023). Factors Influencing the Adoption of Machine Learning Algorithms to Detect Cyber Threats in the Banking Industry. University of the Cumberlands.

Gonaygunta, H., Meduri, S. S., Podicheti, S., & Nadella, G. S. (2023). The Impact of Virtual Reality on Social Interaction and Relationship via Statistical Analysis. International Journal of Machine Learning for Sustainable Development, 5(2), 1-20

Gonaygunta, H., Maturi, M. H., Nadella, G. S., Meduri, K., & Satish, S. (2024). Quantum Machine Learning: Exploring Quantum Algorithms for Enhancing Deep Learning Models. International Journal of Advanced Engineering Research and Science, 11(05).

Gonaygunta, H., Nadella, G. S., Pawar, P. P., & Kumar, D. (2024, May). Enhancing Cybersecurity: The Development of a Flexible Deep Learning Model for Enhanced Anomaly Detection. In 2024 Systems and Information Engineering Design Symposium (SIEDS) (pp. 79-84). IEEE.

Meduri, K. (2024). Cybersecurity threats in banking: Unsupervised fraud detection analysis. International Journal of Science and Research Archive, 11(2), 915-925.

Meduri, K., Nadella, G. S., Gonaygunta, H., & Meduri, S. S. (2023). Developing a Fog Computing-based AI Framework for Real-time Traffic Management and Optimization. International Journal of Sustainable Development in Computing Science, 5(4), 1-24.

Nadella, G. S., Gonaygunta, H., Meduri, K., & Satish, S. (2023). Adversarial Attacks on Deep Neural Network: Developing Robust Models Against Evasion Technique. Transactions on Latest Trends in Artificial Intelligence, 4(4).

Nadella, G. S., Meduri, S. S., Gonaygunta, H., & Podicheti, S. (2023). Understanding the Role of Social Influence on Consumer Trust in Adopting AI Tools. International Journal of Sustainable Development in Computing Science, 5(2), 1-18.

Nadella, G. S., Satish, S., Meduri, K., & Meduri, S. S. (2023). A Systematic Literature Review of Advancements, Challenges and Future Directions of AI And ML in Healthcare. International Journal of Machine Learning for Sustainable Development, 5(3), 115-130.

Nadella, G. S. (2023). Validating the Overall Impact of IS on Educators in US High Schools Using IS-Impact Model–A Quantitative PLS-SEM Approach. University of the Cumberlands.

Nadella, G. S., & Pillai, S. E. V. S. (2024, March). Examining the Indirect Impact of Information and System Quality on the Overall Educators' Use of E-Learning Tools: A PLS-SEM Analysis. In SoutheastCon 2024 (pp. 360-366). IEEE.

Yadav, H. (2023). Securing and Enhancing Efficiency in IoT for Healthcare Through Sensor Networks and Data Management. International Journal of Sustainable Development Through AI, ML and IoT, 2(2), 1-9.

Yadav, H. (2023). Enhanced Security, Privacy, and Data Integrity in IoT Through Blockchain Integration. International Journal of Sustainable Development in Computing Science, 5(4), 1-10.

Yadav, H. (2023). Advancements in LoRaWAN Technology: Scalability and Energy Efficiency for IoT Applications. International Numeric Journal of Machine Learning and Robots, 7(7), 1-9.

Published

2024-07-03

How to Cite

sharma, P. A. (2024). Smart Healthcare: Leveraging IoT and Deep Learning for Real-Time Disease Detection. International Journal of Sustainable Devlopment in Field of IT, 16(16). Retrieved from https://journals.threws.com/index.php/IT/article/view/254

Issue

Section

Articles