Quantum-Inspired Neural Networks: A Paradigm Shift in AI Computation

Authors

  • Prof. Arvind Malhotra

Abstract

Quantum computing has shown immense potential in revolutionizing computational efficiency. This paper explores the integration of quantum-inspired algorithms with deep neural networks to enhance learning efficiency and problem-solving capabilities. We propose a novel quantum-inspired backpropagation mechanism that leverages quantum superposition principles to optimize weight updates. Experimental results demonstrate improved convergence rates and reduced computational complexity compared to classical deep learning models. The findings suggest a promising direction for bridging the gap between quantum computing and artificial intelligence.

References

Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting. ESP Journal of Engineering & Technology Advancements, 1(2), 188-200.

Mahida, A., Mandala, V., Bauskar, S. R., Konkimalla, S., & Reddy, M. S. (2024). Real-Time Fraud Mitigation in Digital Payments: Big Data and AI-Driven Biometric Authentication. Nanotechnology Perceptions, 20, 1176-1193.

Madhavaram, C. R., Galla, E. P., Reddy, M. S., Sarisa, M., & Nagesh, V. (2021). Predicting Diabetes Mellitus in Healthcare: A Comparative Analysis of Machine Learning Algorithms on Big Dataset. Journal homepage: https://gjrpublication. com/gjrecs, 1(01).

Bauskar, S. R., Reddy, M. S., Sarisa, M., & KONKIMALLA, S. The Future of Cloud Computing_ Al-Driven Deep Learning and Neural Network Innovations. BUDHA PUBLISHER.

Konkimalla, S., SARISA, M., REDDY, M. S., & BAUSKAR, S. DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED. BUDHA PUBLISHER.

Reddy, M., Konkimalla, S., Rajaram, S. K., Bauskar, S. R., Sarisa, M., & Sunkara, J. R. (2022). Using AI And Machine Learning To Secure Cloud Networks: A Modern Approach To Cybersecurity. Available at SSRN 5045776.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M., & Reddy, M. S. (2024). An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12(4), 581-596.

Rajaram, S. K., Konkimalla, S., Sarisa, M., Gollangi, H. K., Madhavaram, C. R., & Reddy, M. S. (2023). AI/ML-Powered Phishing Detection: Building an Impenetrable Email Security System. ISAR Journal of Science and Technology, 1(2), 10-19.

Gummadi, V., Ramadevi, N., Udayaraju, P., Ravulu, C., Seelam, D. R., & Swamy, S. V. (2024, September). A Deep Learning-based Optimization Model for Advertisement Campaign. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1783-1790). IEEE.

Gummadi, V., Udayaraju, P., Kolasani, D., Kotaru, C., Sayana, R., & Neethika, A. (2024, December). NLP Based TAG Algorithm for Enhancing Customer Data Platform and Personalized Marketing. In 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS) (pp. 60-67). IEEE.

Mane, S., & Immidi, K. (2024). Strategic Insights and Best Practices for Upgrading to SAP S/4HANA: A Comprehensive Framework for Business Transformation. International Journal of Creative Research In Computer Technology and Design, 6(6).

Mane, S. (2024). Optimizing Returns and Refunds Management in SAP: Leveraging Data-Driven Insights and Advanced Automation. International Journal of Machine Learning and Artificial Intelligence, 5(5), 1-13.

Mane, S., & Immidi, K. (2023). Enhancing SAP Available-to-Promise (ATP) Capabilities through AI Integration: A Transformative Approach to Supply Chain Optimization. International Journal of Creative Research In Computer Technology and Design, 5(5), 1-24.

Mane, S. (2023). Optimizing SAP Sales Order Processing: Strategies, Technologies, and Impact on Operational Efficiency. International Journal of Interdisciplinary Finance Insights, 2(2), 1-32.

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Artificial Intelligence-Driven Predictive Analytics for Educational Behavior Assessment. Transactions on Latest Trends in Artificial Intelligence, 1(1). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/638

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Machine Learning Algorithms for Fraud Detection in Financial Transactions. International Journal of Sustainable Development in Computing Science, 2(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/639

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183

Adusumilli, S., Damancharla, H., & Metta, A. (2023). Enhancing Data Privacy in Healthcare Systems Using Blockchain Technology. Transactions on Latest Trends in Artificial Intelligence, 4(4). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/637

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2021). AI-Powered Cybersecurity Solutions for Threat Detection and Prevention. International Journal of Creative Research In Computer Technology and Design, 3(3).

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2020). Leveraging AI for Real-Time Sentiment Analysis in Social Media Networks. International Numeric Journal of Machine Learning and Robots, 4(4).

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.

Whig, P., & Adusumilli, S. B. K. (2023). Enhancing Healthcare Delivery Through AI-Driven Supply Chain Innovations: A Case Study Perspective. International Transactions in Artificial Intelligence, 7(7).

Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.

Whig, P., & Adusumilli, S. B. K. (2022). Machine Learning Applications in Healthcare Supply Chains: Improving Efficiency, Resilience, and Patient Outcomes. Transactions on Recent Developments in Health Sectors, 5(5).

Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).

Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

Krutthika H. K. & A.R. Aswatha. (2020). FPGA-based design and architecture of network-on-chip router for efficient data propagation. IIOAB Journal, 11(S2), 7–25.

Krutthika H. K. & A.R. Aswatha (2020). Design of efficient FSM-based 3D network-on-chip architecture. International Journal of Engineering Trends and Technology, 68(10), 67–73. https://doi.org/10.14445/22315381/IJETT-V68I10P212

Krutthika H. K. & Rajashekhara R. (2019). Network-on-chip: A survey on router design and algorithms. International Journal of Recent Technology and Engineering, 7(6), 1687–1691. https://doi.org/10.35940/ijrte.F2131.037619

S. Ajay, et al., & Krutthika H. K. (2018). Source hotspot management in a mesh network-on-chip. 22nd International Symposium on VLSI Design and Test (VDAT-2018). https://doi.org/10.1007/978-981-13-5950-7_51

Krutthika Hirebasur Krishnappa, Hiremath, M. M., & Manasa, R. (2024). Semiconductor fault diagnosis using deep learning-based domain adaptation. International Journal of Intelligent Systems and Applications in Engineering, 12(9s). DOI: https://ijisae.org/index.php/IJISAE/article/view/4333

Shashidhar, R., Balivada, D., Shalini, D. N., Krutthika Hirebasur Krishnappa, & Roopa, M. (2023). Music emotion recognition using convolutional neural networks for regional languages. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 1–7. DOI: 10.1109/AIKIIE60097.2023.10390450

Shashidhar, R., Aprameya, C. V., Bharadwaj, R. R., Gontamar, S. M., & Krutthika Hirebasur Krishnappa. (2023). Seismic signal processing and aftershock analysis using machine learning. 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 1–9. DOI: 10.1109/ICRASET59632.2023.10420268.

Published

2024-12-24

How to Cite

Malhotra , P. A. (2024). Quantum-Inspired Neural Networks: A Paradigm Shift in AI Computation. International Journal of Sustainable Development in Computer Science Engineering, 10(10). Retrieved from https://journals.threws.com/index.php/IJSDCSE/article/view/331

Issue

Section

Articles